Near-Field Robust Adaptive Beamforming Based on Worst-Case Performance Optimization
نویسندگان
چکیده
The performance of adaptive beamforming degrades substantially in the presence of steering vector mismatches. This degradation is especially severe in the near-field, for the 3-dimensional source location is more difficult to estimate than the 2-dimensional direction of arrival in far-field cases. As a solution, a novel approach of near-field robust adaptive beamforming (RABF) is proposed in this paper. It is a natural extension of the traditional far-field RABF and belongs to the class of diagonal loading approaches, with the loading level determined based on worst-case performance optimization. However, different from the methods solving the optimal loading by iteration, it suggests here a simple closed-form solution after some approximations, and consequently, the optimal weight vector can be expressed in a closed form. Besides simplicity and low computational cost, the proposed approach reveals how different factors affect the optimal loading as well as the weight vector. Its excellent performance in the near-field is confirmed via a number of numerical examples. Keywords—Robust adaptive beamforming (RABF), near-field, steering vector mismatches, diagonal loading, worst-case performance optimization.
منابع مشابه
Near-Field Robust Adaptive Beamforming Based on Worst-Case Performance Optimization
The performance of adaptive beamforming degrades substantially in the presence of steering vector mismatches. This degradation is especially severe in the near-field, for the 3-dimensional source location is more difficult to estimate than the 2-dimensional direction of arrival in far-field cases. As a solution, a novel approach of near-field robust adaptive beamforming (RABF) is proposed in th...
متن کاملA Robust Adaptive Beamformer Based on Semidefinite Programming with Quadratic Constraints
A robust beamforming with quadratic constraints, formulated as a semidefinite programming (SDP) problem, is proposed in this paper. With this formulation, the constraints on magnitude response can be easily imposed on the adaptive beamformer. And the non-convex quadratic constraints can be transformed into linear constraints. Therefore, the proposed method can be robust against the steering dir...
متن کاملRobust Adaptive Beamforming Algorithms Based on the Constrained Constant Modulus Criterion
We present a robust adaptive beamforming algorithm based on the worst-case criterion and the constrained constant modulus approach, which exploits the constant modulus property of the desired signal. Similarly to the existing worstcase beamformer with the minimum variance design, the problem can be reformulated as a second-order cone (SOC) program and solved with interior point methods. An anal...
متن کاملRobust Adaptive Beamforming Algorithms using the Constrained Constant Modulus Criterion
We present a robust adaptive beamforming algorithm based on the worst-case criterion and the constrained constant modulus approach, which exploits the constant modulus property of the desired signal. Similarly to the existing worst-case beamformer with the minimum variance design, the problem can be reformulated as a secondorder cone (SOC) program and solved with interior point methods. An anal...
متن کاملRobust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem
Adaptive beamforming methods are known to degrade if some of underlying assumptions on the environment, sources, or sensor array become violated. In particular, if the desired signal is present in training snapshots, the adaptive array performance may be quite sensitive even to slight mismatches between the presumed and actual signal steering vectors (spatial signatures). Such mismatches can oc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012